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Abstract

Often the goal of model selection is to choose a model for future prediction, and
it is natural to measure the accuracy of a future prediction by squared error loss.
Under the Bayesian approach, it is commonly perceived that the optimal predictive
model is the model with highest posterior probability, but this is not necessarily
the case. In this paper we show that, for selection among normal linear models,
the optimal predictive model is often the median probability model, which is defined
as the model consisting of those variables which have overall posterior probability
greater than or equal to 1/2 of being in a model. The median probability model
often differs from the highest probability model.

KEY WORDS: Bayesian linear models, predictive distribution, squared error loss,
variable selection.

1 Introduction

Consider the usual normal linear model:

y = Xβ + ε , (1)

where y is the n×1 vector of observed values of the response variable, X is the n×k (k < n)
full rank design matrix of covariates, and β is a k× 1 vector of unknown coefficients. We
assume that the coordinates of the random error vector ε are independent, each with a
normal distribution with mean 0 and common variance σ2 that can be known or unknown.
The least squares estimator for this model is thus β̂ = (X

′
X)−1 X

′
y.

Equation (1) will be called the full model, and we consider selection from among
submodels of the form

Ml : y = Xl βl + ε , (2)
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where l = (l1, l2, . . . , lk) is the model index, li being either 1 or 0 as covariate xi is in or
out of the model (or, equivalently, if βi is set equal to zero); Xl contains the columns of
X corresponding to the nonzero coordinates of l; and βl is the corresponding vector of
regression coefficients.

Upon selecting a model, it will be used to predict a future observation

y∗ = x∗β + ε, (3)

where x∗ = (x∗1, . . . , x
∗
k) is the vector of covariates at which the prediction is to be per-

formed. The loss in predicting y∗ by ŷ∗ will be assumed to be the squared error loss

L(ŷ∗, y∗) = (ŷ∗ − y∗)2. (4)

With the Bayesian approach to model selection, it is commonly perceived that the
best model will be that with the highest posterior probability. This is true under very
general conditions if only two models are being entertained (see Berger, 1997) and is often
true in the variable selection problem for linear models having orthogonal design matrices
(cf. Clyde, 1999, and Clyde and George, 1999, 2000), but is not generally true. Indeed,
even when only three models are being entertained, essentially nothing can be said about
which model is best if one knows only the posterior probabilities of the models. This is
demonstrated in Section 5, based on a geometric representation of the problem.

For prediction of a single y∗ at a specific x∗, one can, of course, simply compute the
posterior expected predictive loss corresponding to each model, and choose the model
that minimizes this expected loss. In such a scenario, however, choosing a specific model
makes little sense; one should, rather, base the prediction on Bayesian model averaging
(cf. Clyde, 1999; Hoeting, Madigan, Raftery and Voliksky, 1999). The basic use of model
selection for prediction is when, because of outside constraints, a single model must be
selected for repeated use in future predictions. (Note that we are assuming that these
constraints preclude use of the Bayesian model averaging answer.) It is natural to assume
that these future predictions will be made for covariates x∗ that arise according to some
distribution. We further assume that the k × k expectation matrix corresponding to this
distribution,

Q = IE
[
(x∗)

′
(x∗)

]
, (5)

exists and is positive definite. A frequent choice is Q = X
′
X, which is equivalent to

assuming that the covariates that will occur in the future are like those that occurred in
the data.

In this scenario, one could still simply compute the expected predictive loss corre-
sponding to each model and minimize, but the expectation would now also be over x∗.
This can add quite a computational burden, especially when there are many models to
consider. Bayesian MCMC schemes have been developed that can effectively determine
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the posterior model probabilities, P (Ml |y), but adding an expectation over x∗ and a
minimization over l can be prohibitive (although see Müller, 1999). We thus sought to
determine if there are situations in which it is possible to give the optimal predictive
model solely in terms of the posterior model probabilities.

Rather general characterizations of the optimal model turn out to be frequently avail-
able but, quite surprisingly, the characterizations are not in terms of the highest posterior
probability model, but rather in terms of what we call the median probability model.

Definition 1 The posterior inclusion probability for variable i is

pi ≡
∑

l : li=1

P (Ml |y), (6)

i.e., the overall posterior probability that variable i is in the model.
If it exists, the median probability model, Ml∗, is defined to be the model consisting

of those variables whose posterior inclusion probability is at least 1/2. Formally, l∗ is
defined, coordinatewise, by

l∗i =





1 if pi ≥ 1
2

0 otherwise.
(7)

It may happen that the set of covariates defined by (7) does not correspond to a model
under consideration, in which case the median probability model will not exist. There
are, however, two important cases in which the median probability model is assured to
exist. The first is in the problem of variable selection, when any variable can be included
or excluded from the model (so that all vectors l are possible).

The second case of particular interest is when the models under consideration follow
a graphical model structure.

Definition 2 A subclass of linear models has graphical model structure if, for each i,
there is a corresponding index set I(i), such that, if variable xi is in a model, then variables
xj with j ∈ I(i) are in the model.

It is clear that, for a graphical model structure, the median probability model must also
have such a structure, and hence will correspond to a model under consideration.

One common example of a graphical model structure is linear models including inter-
actions, in which, if a high order interaction of variables is in the model, then all lower
order interactions (and main effects) of the variables must be in the model.

A second example of a graphical model structure is a sequence of nested models,

Ml(j), j = 0, . . . , k, where l(j) = (1, . . . , 1, 0, . . . , 0), (8)
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with j ones and k − j zeroes. Examples of this scenario include polynomial regression,
in which j refers to the polynomial order used, and autoregressive time series, in which j
refers to the allowed lag. Note that, for nested models, the median probability model has
a simpler representation as Ml(j∗), where j∗ is such that

j∗−1∑

i=0

P (Ml(i) |y) <
1

2
and

j∗∑

i=0

P (Ml(i) |y) ≥ 1

2
. (9)

In other words, one just lists the sequence of posterior model probabilities and sums them
up until the sum exceeds 1/2. The model at which the exceedance occurs is the median
probability model.

The above special cases also define the scenarios that will be investigated in this paper.
The goal will be to provide conditions under which the median probability model is the
optimal predictive model. The conditions are primarily restrictions on the form of the
predictors for y∗. The restrictions are fairly severe, so that the results can best be thought
of as applying primarily to default Bayes or empirical Bayes types of procedures.

Initially, we had sought to find conditions under which the highest posterior probability
model was the optimal predictive model. It came as quite a surprise to find that any
optimality theorems we could obtain were, instead, for the median probability model.
Frequently, however, the median probability model will coincide with the highest posterior
probability model. One obvious situation in which this is the case is when there is a model
with posterior probability greater than 1/2. Indeed, when the highest posterior probability
model has substantially larger probability than the other models, it will typically also be
the median probability model. Another situation in which the two coincide is when

P (Ml |y) =
k∏

i=1

pli
i (1− pi)

(1−li), (10)

where the pi are the posterior inclusion probabilities in (6). This will be seen to occur
in the problem of variable selection under an orthogonal design matrix, certain prior
structures, and known variance σ2. (Clyde and Parmigiani, 1996, and Clyde, DeSimone
and Parmigiani, 1996, show that (10) can often be approximately satisfied when σ2 is
unknown, and it is likely that the median probability model will equal the maximum
probability model in such cases.)

That the median probability model is optimal (under restrictions) for both the variable
selection problem and the nested case, which are very different in nature, suggests that
it might quite generally be the optimal predictive model and should replace the highest
posterior probability model as the ‘preferred’ predictive model in practice. (We will see
evidence of this later.) Note, also, that determination of the median probability model
is very straightforward within ordinary MCMC model search schemes. In these schemes,
one develops a Markov Chain to move between the models, with the posterior probability
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of a model being estimated by the fraction of the time that the model is visited by
the chain. To determine the median probability model, one need only record, for each
variable, the fraction of the time that the variable is present in the visited models; at the
end of the MCMC, one chooses those variables for which the fraction exceeds 1/2. Indeed,
determining the median probability model in this fashion will often be computationally
simpler than finding the highest posterior probability model. In the variable selection
problem, for instance, accurately determining when k fractions are above or below 1/2
is often much easier than trying to accurately estimate the fractional visiting times of 2k

models.
The difference between predictive optimality and highest posterior model probabil-

ity also explains several misunderstandings that have arisen out of the literature. For
instance, Shibata (1983) shows that the BIC model selection criterion is asymptotically
inferior to AIC for prediction in scenarios such as polynomial regression, when the true
regression function is not a polynomial. This has been routinely misinterpreted as saying
that the Bayesian approach to model selection is fine if the true model is among those
being considered, but is inferior if the true model is outside the set of candidate models.
Note, however, that BIC is essentially just an approximation to the log posterior prob-
ability of a model, so that model selection according to BIC is (at best) just selecting
the highest posterior probability model, which is often not the optimal Bayesian answer.
Indeed, as discussed above, the optimal Bayesian predictive model in the situation of
Shibata (1983) is actually the median probability model. (There are also concerns with
the applicability of BIC as an approximation to log posterior probability here; see Berger,
Ghosh, and Mukhopadhyay, 1999, for further discussion.)

In Section 2, we set the basic notation for the prediction problem and give the formula
for predictive expected loss. Section 3 gives the basic theory concerning optimality of
the median probability model, and discusses application in nested model and ANOVA
scenarios. Section 4 generalizes the basic theory to deal with problems in which all models
have common nuisance parameters and the design matrix is non-orthogonal. A geometric
description of the problem is provided in Section 5; this provides considerable insight
as to the structure of the problem. Finally, Section 6 gives some concluding comments,
primarily relating to the limitations of the theory.

2 Preliminaries

2.1 Posterior inputs to the prediction problem

Information from the data and prior is summarized by providing, for all l,

pl ≡ P (Ml |y), the posterior probability of model Ml , (11)

πl(βl, σ |y), the posterior distribution of the unknown parameters in Ml.
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These inputs will often arise from a pure Bayesian analysis, based on initial specification
of prior probabilities P (Ml) for the models, together with prior distributions πl(βl, σ) for
the corresponding unknown parameters. Then, given the data y, the posterior probability
of Ml is given by

pl =
P (Ml)ml(y)∑

l∗
P (Ml∗)ml∗(y)

, (12)

where
ml(y) =

∫
πl(βl, σ)fl(y |βl, σ)dβldσ (13)

is the marginal density of y under Ml, with fl(y |βl, σ) denoting the normal density spec-
ified by Ml. Likewise, the posterior distributions πl(βl, σ |y) are given by straightforward
application of Bayes theorem within each model.

We allow, however, for nontraditional determination of the pl and πl(βl, σ |y), as can
occur with use of default strategies. In particular, it is not uncommon to use separate
methodologies to arrive at the pl and the πl(βl, σ |y), the pl being determined through
use of a default model selection tool such as BIC, Intrinsic Bayes Factors (cf. Berger and
Pericchi, 1996a), or Fractional Bayes Factors (cf. O’Hagan, 1995); and the πl(βl, σ |y) be-
ing determined from ordinary noninformative priors, typically the reference priors, which
are either constant in the known variance case or given by

πl(βl, σ) =
1

σ
(14)

in the unknown variance case. Of course, this may be suboptimal from a Bayesian per-
spective, since it essentially means using different priors to determine the pl and the
πl(βl, σ |y).

The result of following such a mixed strategy also allows non-Bayesians to connect
with this methodology. In particular, the predictor that results from use of the reference
prior in model Ml is easily seen to be the usual least squares predictor, based on the least
squares estimate

β̂l = (X
′
lXl)

−1 X
′
l y.

Thus, for instance, the common use of BIC together with least squares estimates can be
converted into our setting by defining pl ∝ eBIC .

Finally, the empirical Bayes approach is often used to obtain estimated versions of the
quantities in (11). Again, while not strictly coherent from a Bayesian perspective, one
can utilize such inputs in the following methodology.
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2.2 Predictors and predictive expected loss

It is easy to see that the optimal predictor of y∗ in (3), under squared error loss and when
the model Ml, of dimension kl, is true, is given by

ŷ∗l = x∗Hl β̃l ,

where β̃l is the posterior mean of βl with respect to πl(βl, σ |y) and Hl is the k × kl

matrix whose (i, j) entry is 1 if li = 1 and j =
∑i

r=1 lr, and is 0 otherwise. Note that Hl
is simply the matrix such that xHl is the subvector of x corresponding to the nonzero
coordinates of l, i.e., the covariate vector corresponding to model Ml. The posterior mean
of β in the full model is thus formally written as β̃(1,...,1), but we will drop the subscript

and simply denote it by β̃ (as we have done with β̂, the least squares estimate for the full
model).

The optimal Bayesian predictor of y∗ is well-known to be the model averaging predic-
tor, given by

ȳ∗ = x∗ β̄ ≡ x∗
∑

l

pl Hl β̃l . (15)

The best single model for prediction can be found by the following lemma.

Lemma 1 The optimal model for prediction of y∗ in (3) under the squared error loss (4),
when the future covariates satisfy (5) and the posterior distribution is as in (11), is the
model that minimizes

R(Ml) ≡ (Hl β̃l − β̄)
′
Q (Hl β̃l − β̄), (16)

where β̄ is defined in (15).

Proof. For fixed x∗, a standard result (see, e.g., Bernardo and Smith, 1994, p. 398) is
that

IE[(ŷ∗l − y∗)2] = C + (ŷ∗l − ȳ∗)2,

where C does not depend on l and the expectation is with respect to the predictive
distribution of y∗ given y. Since

(ŷ∗l − ȳ∗)2 =
(
Hlβ̃l − β̄

)′
x∗′x∗

(
Hlβ̃l − β̄

)
,

taking the expectation over x∗ and using (5) yields the result. 2

3 Basic results and examples

Subsection 3.1 presents the basic theorem that is used to establish optimality of the
median probability model. Subsection 3.2 considers the situation in which all submodels
of the linear model are allowed. Subsection 3.3 deals with nested models and subsection
3.4 considers the ANOVA situation.
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3.1 Basic theory

Assume X
′
X is diagonal. Then it will frequently be the case that the posterior means,

β̃l, satisfy
β̃l = H

′
l β̃ , (17)

i.e., that the posterior mean of βl is found by simply taking the relevant coordinates of
β̃, the posterior mean in the full model. Here are two common scenarios in which (17) is
true.

Case 1. Noninformative priors for model parameters: Use of the reference priors in
(14) (or constant priors when σ2 is known) results in the posterior means being the least
squares estimates β̂l. Because X

′
X is diagonal, it is easy to see that (17) is then satisfied.

Case 2. Independent conjugate normal priors: In the full model, suppose that π(β |σ)
is Nk(µ, σ2Λ), the k-variate normal distribution with mean µ and diagonal covariance
matrix σ2Λ, with Λ given. Then it is natural to choose the priors on βl in the submodels
to be Nkl(H

′
l µ, σ2H

′
l ΛHl), where kl is the dimension of βl. It is then easy to verify

that (17) holds, for any prior on σ2, or for σ2 being given (e.g., known, or estimated).
Note that we do not necessarily recommend using this conjugate form of the prior, with
unknown σ2; see Berger and Pericchi (2001) for discussion.

While Λ could be chosen subjectively, it is more common to utilize default choices,
such as the g-type normal priors (cf. Zellner, 1986) Λ = n(X′X)−1 or Λ = c (X′X)−1, with
c chosen by an empirical Bayes analysis (e.g., chosen to maximize the marginal density,
averaged over models). Papers which fall under these settings include Chipman, George
and McCulloch (2001), Clyde and Parmigiani (1996), Clyde, DeSimone and Parmigiani
(1996), Clyde, Parmigiani and Vidakovich (1998), and George and Foster (2000), .

Note that one can use noninformative priors for certain coordinates and independent
conjugate normal priors for other coordinates. This is particularly useful when all models
under consideration have ‘common’ unknown parameters; it is then typical to utilize
noninformative priors for the common parameters, while using independent conjugate
normal priors for the other parameters. (See Berger, Pericchi, and Varshavsky, 1998, for
justification of this practice.)

Lemma 2 If Q is diagonal with diagonal elements qi > 0 and (17) holds, then

R(Ml) =
k∑

i=1

β̃2
i qi(li − pi)

2 , (18)

where pi is as in (6).
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Proof. From (17) it follows that

β̄ ≡ ∑

l

plHlβ̃l =
∑

l

plHlH
′
lβ̃ = D(p)β̃,

where D(p) is the diagonal matrix with diagonal elements pi. Likewise, (16) becomes

R(Ml) = (Hl H
′
l β̃ −D(p)β̃)′Q (Hl H

′
l β̃ −D(p)β̃)

= β̃
′
(D(l)−D(p))Q (D(l)−D(p)) β̃,

and the conclusion is immediate. 2

Theorem 1 If Q is diagonal with diagonal elements qi > 0, condition (17) holds, and
the models under consideration have graphical model structure, then the median probability
model is the best predictive model.

Proof. To minimize (18) among all possible models, it is clear that one should choose
li = 1 if pi ≥ 1/2 and li = 0 otherwise, which is as in (7). As mentioned earlier, the
graphical model structure ensures that the model so-defined is actually in the space of
models under consideration, completing the proof. 2

The above theorem did not formally use the condition that X
′
X be diagonal. However,

if it is not diagonal, then (17) will not typically hold, nor will Q usually be diagonal.

3.2 All submodels scenario

Under the same conditions as in Subsection 3.1, the following corollary to Theorem 1
gives the median probability model when all submodels are considered.

Corollary 1 If Q is diagonal with diagonal elements qi > 0, condition (17) holds, and
any submodel of the full model is allowed, then the best predictive model is the median
probability model given by (7). In addition, if σ2 is given in Case 2 of subsection 3.1 and
the prior probabilities of the models satisfy

P (Ml) =
k∏

i=1

(p0
i )

li(1− p0
i )

(1−li) , (19)

where (p0
i )

li is the prior probability that variable xi is in the model, then (10) is satisfied
and the median probability model is the model with highest posterior probability.
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Proof. The first part of the corollary is immediate, since {all submodels} clearly has
graphical model structure.

For Case 2 and given σ2, computation as in Clyde and Parmigiani (1996) and Clyde,
DeSimone and Parmigiani (1996) shows that (10) is satisfied with

p−1
i = 1 +

(
1

p0
i

− 1

)
(1 + λidi)

1/2 exp

{
−v2

i λi + 2viµi − µ2
i di

2σ2(1 + λidi)

}
,

where the {di} and {λi} are the diagonal elements of X′X and Λ, respectively, and
v = (v1, . . . , vk)

′ = X′y. 2

While many proposed choices of prior probabilities satisfy (19), others do not. For
instance, Jeffreys (1961) suggested that it might often be reasonable to choose the prior
probability of given model orders to be decreasing, e.g., P (order j) ∝ 1/j, with this prob-
ability then being divided up equally among all models of size j. Such an assignment of
prior probabilities would not typically satisfy (19), and the best predictive model (i.e., the
median probability model) would then not necessarily be the highest posterior probability
model, even in Case 2.

Finally, it should be noted that Corollary 1 also applies to the case where all models
under consideration have ‘common parameters.’ One can simply define p0

i = 1 for such
parameters.

3.3 Nested models

We initially consider the orthogonal case, as in Subsection 3.1. This is generalized to the
nonorthogonal case at the end of the subsection.

3.3.1 Orthogonal case

Corollary 2 If Q is diagonal with diagonal elements qi > 0, condition (17) holds, and
the models under consideration are nested, then the best predictive model is the median
probability model given by (7) or (9).

Proof. This is immediate from Theorem 3.1, because nested models have graphical model
structure. 2

Example 1. Nonparametric Regression (also studied in Mukhopadhyay, 2000, for a
different purpose): The data consists of the paired observations (xi, yi), i = 1, · · · , n,
where, for known σ2,

yi = f(x) + εi, εi ∼ N(0, σ2). (20)
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Represent f(·), an unknown function defined on the interval (−1, 1), using an orthonormal
series expansion, as

f(x) =
∞∑

i=1

βi φi(x),

where {φ1(x), φ2(x), . . .} are the Chebyshev polynomials. Of course, only a finite approx-
imation to this series can be utilized, so define the model Ml(j) (see (8) for notation) to
be

Ml(j) : y =
j∑

i=1

βi φi(x) + ε, ε ∼ N(0, σ2).

The problem is thus to choose among the nested sequence of linear models Ml(j), j = 1, ....
In practice, we choose an upper bound k on the size of the model, with Ml(k) being the
full model in our earlier terminology.

The function f(x) = − log(1−x) was considered in Shibata (1983), as an example for
which BIC yielded considerably sub-optimal models for prediction. It is hence of interest
to see how the median probability model fares in this situation.

We assume the yi are observed at the covariates xi = Cosine([n− i+ 1
2
]π
n
), i = 1, · · · , n,

and let Xj = ((φm(xi))) be the resulting n×k design matrix with indicated (i,m) entries,
i = 1, . . . , n and m = 1, . . . , k. From the definition of Chebyshev polynomials, it follows
that X′

jXj = n
2
Ij, where Ij is the j × j identity matrix. It follows that the least squares

estimate of βj is β̂j = 2
n
X′

jy.
Within any model Ml(j), assume that the βi have independent N(0, ci−a) prior distri-

butions, for some constants c and a (which are the same across models). The choice of a
determines how quickly the prior variances of the βi decrease (any L2 function must have
a > 1), and we shall consider three choices: a = 1, a = 2 (which happens to be the rate
corresponding to the test function), and a = 3. For simplicity of calculation, we estimate
c by an empirical Bayes analysis using the full model Ml(k), keeping the estimate ĉ fixed
across models. Then, if Q is diagonal (as would thus be the case for the natural choice
Q = X′

kXk), Corollary 2 implies that the median probability model will be the optimal
Bayesian predictive model.

For nonparametric regression, it is common to utilize the loss function

L(f, f̂) =
∫ 1

−1
(f̂(x)− f(x))2 dx . (21)

In the predictive context, use of this loss is equivalent to prediction under squared error
loss when the future covariates x are thought to be uniformly distributed on (−1, 1).
A standard computation shows that L(f, f̂) =

∑∞
i=1(β̃i − βi)

2, where β̃i stands for the
estimator that is used for the true coefficient βi. Since we have restricted the models under
consideration to be of maximum order k, it follows that β̃i = 0 for i > k in our problem
and the loss arising from these coordinates can be ignored in model comparison. The
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resulting loss is also easily seen to be equivalent to the predictive loss we have previously
used, with Q = Ik.

The optimality of the median probability model is with respect to the internal Bayesian
computation, assuming the true function is unknown and can be represented by one of
the models Ml(j), j = 1, . . . , k. For the example considered by Shibata, however, the true
model lies outside the collection of Bayesian models (since it can be shown that none of
the βi, i = 1, . . ., are zero). It is thus of interest to see how the median probability model
performs in terms of the loss (21) for the (here known) function.

Under Ml(j), the estimates of the βi are the (empirical) Bayes estimates β̃i = (1 +

2σ2ia/nĉ)−1β̂i if i ≤ k, and β̃i = 0 otherwise. Hence the predictive loss under model Ml(j)

is
∑j

i=1(β̃i − βi)
2 +

∑∞
i=j+1 β2

i , although we will ignore the terms in sum for i > k, since
they are common across all considered models .

In Table 1, we compare the expected predictive loss (the frequentist expectation with
respect to the data, under the true function) of the maximum probability model with that
of the median probability model. We also include the model averaged estimate arising
from (15) in the comparison; this is the optimal estimate from the internal Bayesian
perspective. Finally, we also consider AIC and BIC. These model selection criteria are
most commonly used in conjunction with least squares parameter estimates, and that
choice is made for computing the expected predictive losses in the table.

The entries in Table 1 were computed by simulating data from the true function,
selecting a model, computing the corresponding function estimate, and finally determining
the actual loss. This was repeated a total of N = 1000, 1000, 100 times, respectively, for
the three cases in the table, with the resulting averages forming the table entries. Note
that the largest model sizes considered for the three cases were k = 29, 79, 79, respectively.

Our main goal was to compare the maximum probability model and the median prob-
ability model. The median probability model is clearly significantly better, even in terms
of this frequentist expected loss. (Again, we know it is better in terms of Bayesian predic-
tive loss.) Indeed, the median probability model is almost as good as the model averaging
estimate (and in two cases is even better); since model averaging is thought of as optimal,
its near equivalence with MedianProb is compelling.

Note that AIC does seem to do better than BIC, as reported by Shibata, but all of the
actual Bayesian procedures are considerably better than either. This is, in part, due to
the fact that the Bayesian procedures use better parameter estimates than least squares,
but the dominance of MedianProb and ModelAv (but not MaxProb) can be seen to hold
even if the superior shrinkage estimates are also used with BIC and AIC.

A curiosity here is that Corollary 1 shows that MaxProb is the optimal predictive
model if all possible models (nested and non-nested) are considered. So considering all
possible models leads to worse actual performance (for the given test function) than
considering only the nested models.
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For n = 30, σ2 = 1, Expected Loss [Average Model Size] of
MaxProb MedianProb ModelAv BIC AIC

a = 1 0.99 [8] 0.89 [10] 0.84 1.14 [8] 1.09 [7]
a = 2 0.88 [10] 0.80 [16] 0.81 1.14 [8] 1.09 [7]
a = 3 0.88 [9] 0.84 [17] 0.85 1.14 [8] 1.09 [7]

For n = 100, σ2 = 1, Expected Loss [Average Model Size] of
MaxProb MedianProb ModelAv BIC AIC

a = 1 0.54 [14] 0.51 [19] 0.47 0.59 [11] 0.59 [13]
a = 2 0.47 [23] 0.43 [43] 0.44 0.59 [11] 0.59 [13]
a = 3 0.47 [22] 0.46 [45] 0.46 0.59 [11] 0.59 [13]

For n = 2000, σ2 = 3, Expected Loss [Average Model Size] of
MaxProb MedianProb ModelAv BIC AIC

a = 1 0.34 [23] 0.33 [26] 0.30 0.41 [12] 0.38 [21]
a = 2 0.26 [42] 0.25 [51] 0.25 0.41 [12] 0.38 [21]
a = 3 0.29 [38] 0.29 [50] 0.29 0.41 [12] 0.38 [21]

Table 1: For various n and σ2, the expected loss and average model size for the maxi-
mum probability model (MaxProb), the Median Probability Model (MedianProb), Model
Averaging (ModelAv), and BIC and AIC, in the Shibata example.

3.3.2 Non-orthogonal case

Corollary 2 presented a result for nested models in the case of an orthogonal design matrix.
The orthogonality condition can be removed if, as is commonly the case, Q = cX

′
X, for

some c > 0.

Theorem 2 If Q = cX
′
X, for some c > 0, condition (17) holds, and the models under

consideration are nested, then the best predictive model is the median probability model
given by (7) or (9).

Proof. Standard Gram-Schmidt orthogonalization of the sequence of nested models re-
duces the problem to the orthogonal case. 2

In the non-orthogonal case, the most common situation in which (17) will be satisfied is
when β̃l = b β̂l, where b > 0; i.e., the posterior means are proportional to the least squares
estimates, with the same proportionality constant across models. There are two common
scenarios in which this is true. The first is when the reference priors (14) are used, in
which case the posterior means are the least squares estimates. The second is when using
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g-type normal priors (cf. Zellner, 1986), where πl(βl |σ) is Nkl(0, c σ2 (X
′
lXl)

−1), with the
same constant c > 0 for each model. (This constant could be specified or estimated in an
empirical Bayesian context.) It is then easy to verify that β̃l = b β̂l, with b = c/(1 + c)
(irrespective of the prior for σ).

An example of a nested model in the non-orthogonal case will be given in Section 4.

3.4 ANOVA

Many ANOVA problems, when written in linear model form, yield diagonal X
′
X and any

such problems will naturally fit under the theory of Subsection 3.1. In particular, this is
true for any balanced ANOVA in which each factor has only two levels.

To see the idea, it suffices to consider the case of two factors A and B, each with two
levels. The full two-way ANOVA model with interactions is

yijk = µ + ai + bj + abij + εijk

with i = 1, 2, j = 1, 2, k = 1, 2, . . . , K and εijk independent N(0, σ2), with σ2 unknown.
In our earlier notation, this can be written

y = Xβ + ε,

where
y = (y111, . . . , y11K , y121, . . . y12K , y211, . . . y21K , y221, . . . y22K)′

β = (µ, a1, b1, ab11)
′,

and X is the 4K × 4 matrix

X =




1 1 1 1
...

...
...

...
1 1 1 1
1 1 −1 −1
...

...
...

...
1 1 −1 −1
1 −1 1 −1
...

...
...

...
1 −1 1 −1
1 −1 −1 1
...

...
...

...
1 −1 −1 1
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where the last column is the product of the second and the third, since a1 = −a2, b1 = −b2,
ab11 = ab22 = −ab12 = −ab21 . Computation then shows that X

′
X = 4KI4, so that the

earlier theory will apply.
There are several model comparison scenarios of interest. We use a slight modification

of the previous model notation for simplicity, e.g., M1011 instead of M(1,0,1,1), representing
the model having all parameters except a1.

Scenario 1 - All models with the constant µ: Thus the set of models under consideration
is {M1000,M1100, M1010,M1001,M1101,M1011,M1110,M1111}.
Scenario 2 - Interactions present only with main effects, and µ included: The set of
models under consideration here is {M1000,M1100,M1010,M1110,M1111}. Note that this set
of models has graphical structure.

Scenario 3 - An analogue of an unusual classical test: In classical ANOVA testing, it
is sometimes argued (cf. Scheffé, 1959, pp. 94 and 110) that one might be interested
in testing for no interaction effect followed by testing for the main effects, even if the
no-interaction test rejected. (It is argued that the hypotheses of zero main effects could
still be accepted, which would imply that, while there are differences, the tests do not
demonstrate any differences in the levels of one factor averaged over the levels of the other.)
The four models that are under consideration in this process, including the constant µ in
all, are {M1101,M1011,M1110,M1111}.

We do not comment upon the reasonableness of considering this class of models, but
are interested in the class because it does not have graphical model structure and yet
the median probability model is guaranteed to be in the class. To see this, consider
the possibility that a1 has posterior inclusion probability less than 1/2, and so would be
excluded from the median probability model. Clearly this can only happen if M1011 has
posterior probability greater than 1/2; but then M1011 would automatically be the median
probability model. Arguing similarly for b1 and ab11, one can conclude that M1111 will be
the median probability model, unless one of the other models has posterior probability
greater than 1/2 in which case it will be the median probability model.

Example 2. Montgomery (1991, pp.271–274) considers the effects of the concentration of
a reactant and the amount of a catalyst on the yield in a chemical process. The reactant
concentration is factor A and has two levels, 15% and 25%. The catalyst is factor B, with
the two levels ‘one bag’ and ‘two bags’ of catalyst. The experiment was replicated three
times and the data are given in Table 2.

Note that the classical ANOVA tests of ‘no A effect,’ ‘no B effect,’ and ‘no interaction
effect’ resulted in p-values of 0.00008, 0.00236, and 0.182, respectively. The Bayesian
quantities that would be used analogously are the posterior variable inclusion probabilities,
p2, p3, and p4. (Strictly, 1− pi would be the analogue of the corresponding p-value.)

To carry out the Bayesian analysis, the reference prior π(µ, σ) ∝ 1
σ

was used for the
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treatment replicates
combination I II III
A low, B low 28 25 27
A high, B low 36 32 32
A low, B high 18 19 23
A high, B high 31 30 29

Table 2: Data for the 22 ANOVA example.

model posterior posterior
probability expected loss

M1000 0.0008 235.47
M1100 0.0342 58.78
M1010 0.0009 177.78
M1001 0.0003 237.43
M1110 0.6019 1.083
M1101 0.0133 60.73
M1011 0.0003 179.74
M1111 0.3483 3.04

Table 3: Scenario 1 – all models. Posterior probabilities and expected losses for the
models. The posterior inclusion probabilities are p2 = 0.9977, p3 = 0.9514, and p4 =
0.3621; thus M1110 is the median probability model.

common parameters, while the standard N(0, σ2) g-prior was used for a1, b1 and ab11.
In each scenario, the models under consideration were given equal prior probabilities of
being true. The conditions of Subsection 3.1 are then satisfied, so that we know that the
median probability model will be the optimal predictive model.

For the three scenarios described above, the results of the Bayesian analysis are given
in Tables 3, 4, and 5. In all three scenarios, the median probability model indeed has the
lowest posterior expected loss (as was known from the theory). Interestingly, the median
probability model equals the maximum probability model in all three scenarios, and is
the model M1110.

The variable inclusion probabilities show clearly that an ‘A effect’ and a ‘B effect’
should be in the model (with inclusion probabilities exceeding 0.99 and 0.95, respectively),
while the interaction effect has a moderately small probability (about 1/3) of being in the
model.

We also carried out an analysis with the N(0, cσ2) g-prior for a1, b1 and ab11, but
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model posterior posterior
probability expected loss

M1000 0.0009 237.21
M1100 0.0347 60.33
M1010 0.0009 177.85
M1110 0.6103 0.97
M1111 0.3532 3.05

Table 4: Scenario 2 – graphical models. Posterior probabilities and expected losses for
the models. The posterior inclusion probabilities are p2 = 0.9982, p3 = 0.9644, and
p4 = 0.3532; thus M1110 is the median probability model.

model posterior posterior
probability expected loss

M1011 0.0003 180.19
M1101 0.0138 64.93
M1110 0.6245 1.01
M1111 0.3614 2.78

Table 5: Scenario 3 – unusual classical models. Posterior probabilities and expected losses
for the models. The posterior inclusion probabilities are p2 = 0.9997, p3 = 0.9862, and
p4 = 0.3754; thus M1110 is the median probability model.
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model posterior posterior
probability expected loss

M1011 0.124 143.03
M1101 0.286 36.78
M1110 0.456 10.03
M1111 0.134 9.41

Table 6: Scenario 3 – unusual classical models, with g-prior for µ. Posterior probabilities
and expected losses for the models. The posterior inclusion probabilities are p2 = 0.876,
p3 = 0.714, and p4 = 0.544; thus M1111 is the median probability model.

with c being estimated by maximizing the overall marginal density 1
L

∑
l ml(y), where

the individual marginal densities ml(y) are given by (13) and L is the number of models
under consideration. The conditions of Subsection 3.1 are still satisfied, so that we know
that the median probability model will be the optimal predictive model. The results did
not significantly change from the above analysis, however, and so are not reported.

Had σ2 been known in Scenario 1, Corollary 1 would have established that the median
probability model would equal the maximum probability model. Here σ2 is unknown,
however, and it will not always be the case that the median probability model equals
the maximum probability model. Indeed, we also carried out the analysis of the example
utilizing the N(0, σ2) g-prior for µ, as well as for a1, b1 and ab11, and found that the
median probability model then differed from the maximum probability model in all three
scenarios. Table 6 gives the results for Scenario 3; note that the median probability model
is nearly the lowest probability model! (We do not, however, recommend this analysis;
g-priors should not be used for parameters common to all models.)

4 Common non-orthogonal nuisance parameters

Frequently, all models will contain ‘common’ parameters β(1) ≡ (β1, . . . , βk1). A typical
example is when all models contain an overall mean β1 (or, equivalently, when the first
column of each model design matrix is (1, . . . , 1)

′
). For the orthogonal case discussed

earlier, this caused no difficulties. For the non-orthogonal case, however, this considerably
complicates the analysis. Still, we will see that the median probability model remains
optimal under mild modifications of the previously considered conditions.

To present the results, it is convenient to slightly change notation, writing the regres-
sion parameters of Ml as (β

′
(1),β

′
l)
′
, with corresponding design matrix (X(1) Xl). Also,

define

Q(1) = I−X(1) (X
′
(1) X(1))

−1 X
′
(1) ,
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Pl = Q
1/2
(1) Xl (X

′
l Q(1) Xl)

−1 X
′
l Q

1/2
(1) . (22)

The needed conditions are:

Condition 1. Q = cX
′
X for some c > 0.

Condition 2. πl (β(1),βl |σ) = πl (βl |σ) (i.e., the prior density for β(1) in each model
is constant).

Condition 3. For some fixed b > 0, the posterior means of βl are of the form β̃l =
b (X

′
lQ(1)Xl)

−1X
′
lQ(1) y.

A g-type prior for which Condition 3 holds is

πl(βl |σ) = N (0, c σ2 (X
′
lQ(1)Xl)

−1) ,

with the same constant c > 0 for each model. It is then easy to verify that Condition 3
holds with b = c/(1 + c) (irrespective of the prior on σ). Note that, if X

′
(1)Xl = 0, then

X
′
lQ(1)Xl = X

′
lXl, so this would be a standard g-type prior.

Theorem 3 Under Conditions 1 through 3, the optimal model for predicting y∗ under
squared error loss minimizes

R(Ml) = C + cb2w
′


Pl − 2

∑

l∗
pl∗Pl·l∗


 w , (23)

where w = Q1/2 y, C is a constant, and l · l∗ is the dot-product of l and l∗.

Proof. Write x∗ = (x∗(1),x
∗
(2)) and X = (X(1),X(2)), and define U =

(
X′

(1)X(1)

)−1
X′

(1)

and Vl =
(
X′

lQ(1)Xl

)−1
X′

lQ(1). Note that the non-common variables in Ml are x∗(2) Hl2 ,
where Hl2 is the matrix consisting of the rows of Hl from k1 +1 to k. With this notation,
note that

ŷ∗l = x∗(1) β̃(1) + x∗(2) Hl2 β̃l. (24)

Using Condition 2, it is straightforward to show that

IE
[
β(1) |y, βl

]
= U (y −Xlβl) ,

so that
β̃(1) = IE

[
β(1) |y

]
= U (y −Xl IE [βl |y]) .

Using this in (24), together with Condition 3, yields

ŷ∗l = x∗(1) U (I− bXlVl) y + bx∗(2) Hl2 Vl y

= x∗
(

U (I− bXlVl)
bHl2 Vl

)
y.
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Defining

Wl =

(
−UXl
Hl2

)
Vl,

it follows (using Condition 1 in the third equality that

R(Ml) = IEx∗ [ŷ∗l − ȳ∗]2

= b2 IEx∗

x∗


Wl −

∑

l∗
pl∗ Wl∗


 y




2

= c b2 y′

Wl −

∑

l∗
pl∗ Wl∗



′

X′X


Wl −

∑

l∗
pl∗ Wl∗


 y. (25)

Note that

XWl = (X(1),X(2))

(
−UXl
Hl2

)
Vl

= −X(1)UXlVl + XlVl = Q
1/2
(1) PlQ

1/2
(1) .

Together with (25), this yields

R(Ml) = c b2 y′Q1/2
(1)


Pl −

∑

l∗
pl∗ Pl∗


 Q(1)


Pl −

∑

l∗
pl∗ Pl∗


 y

= c b2 w′ (Pl −
∑

l∗
pl∗ Pl∗

)2
w, (26)

the last step utilizing (22) and the fact that Q(1) is idempotent.

Because Pl is the projection onto the columns of Q
1/2
(1) Xl that correspond to the

nonzero elements of l, it is clear that P2
l = Pl and PlPl∗ = Pl·l∗ . Expanding the

quadratic in (26), with

C = c b2 w′

∑

l∗
pl∗ Pl∗




2

w,

yields the result. 2

Corollary 3 (Semi-orthogonal case). Suppose Conditions 1 through 3 hold and that
X
′
(2)Q(1)X(2) is diagonal with positive entries, where the full design matrix is X = (X(1) X(2)).

Then, if the models under consideration have graphical model structure, the best predictive
model is the median probability model given by (7).
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Proof. Writing X′
(2)Q(1)X(2) = D(d), the diagonal matrix with diagonal elements di > 0,

Pl can be expressed as

Pl = Q
1/2
(1) X(2)Hl2

(
H′

l2X
′
(2)Q(1)X(2)Hl2

)−1
H′

l2X
′
(2)Q

1/2
(1)

= Q
1/2
(1) X(2)Hl2

(
H′

l2D(d)Hl2

)−1
H′

l2X
′
(2)Q

1/2
(1)

= Q
1/2
(1) X(2) (D(d · l))−1 X′

(2)Q
1/2
(1) .

Hence, defining u = X′
(2)Q

1/2
(1) w, (23) becomes

R(Ml) = C + cb2u′

D(d · l)−1 − 2

∑

l∗
pl∗D(d · l · l∗)−1


 u

= C + cb2
k∑

i=1

u2
i d
−1
i li


1− 2

∑

l∗:l∗i =1

pl∗


 ,

and the conclusion is immediate. 2

Note that X
′
(2)Q(1)X(2) will be diagonal if either (i) X

′
X is diagonal or (ii) X

′
(2)X(2) is

diagonal and X
′
(1)X(2) = 0.

Corollary 4 (Nested case). Suppose Conditions 1 through 3 hold and that the Ml(j), j =
0, . . . , k, are a nested sequence of models. Then the best predictive model is the median
probability model given by (7) or (9).

Proof. For the nested case, (23) becomes

R(Ml(j)) = C + c b2 w′

Pl(j) − 2

j−1∑

i=0

pl(i)Pl(i) − 2
k∑

i=j

pl(i)Pl(j)


 w. (27)

It follows that

R(Ml(j+1))−R(Ml(j)) = c b2


1− 2

k∑

i=j+1

pl(j)


 w′ (Pl(j+1) −Pl(j)

)
w.

Since w′
(
Pl(j+1) −Pl(j)

)
w > 0 and the

(
1− 2

∑k
i=j+1 pl(j)

)
are increasing in j from −1

to +1, moving to a larger model will reduce the risk until
(
1− 2

∑k
i=j+1 pl(j)

)
first turns

positive. The conclusion is immediate. 2

Example 3. Consider Hald’s regression data (Draper and Smith, 1981), consisting of n =
13 observations on a dependent variable y, with four potential regressors: x1, x2, x3, x4.
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Suppose that the following nested models, all including a constant term c, are under
consideration:

Ml(1) : {c, x4} Ml(2) : {c, x1, x4} Ml(3) : {c, x1, x3, x4} Ml(4) : {c, x1, x2, x3, x4},

again using the notation in (8). We choose the reference prior (14) for the parameters of
each model, which effectively means we are using least squares estimates for the predictions
and ensures that Conditions 2 and 3 are satisfied. (Here, the models have two common
parameters, the constant term and the parameter corresponding to variable x4.) Choosing
Q = X

′
X, it follows that the posterior predictive loss of each model is given by (23).

Two choices of model prior probabilities are considered, P (Ml(i)) = 1/4, i = 1, 2, 3, 4,

and P (Ml(i)) = i−1/
∑4

j=1 j−1 (the latter type of choice being discussed in, e.g., Jeffreys,
1961). Default posterior probabilities of each model are then obtained using the Encom-
passing Arithmetic Intrinsic Bayes Factor, recommended in Berger and Pericchi (1996a,
1996b) for linear models. The resulting model posterior probabilities, P (Ml(i) |y) and
P ∗(Ml(i) |y), for the two choices of prior probabilities, respectively, are given in Table 7.
The table also presents the normalized posterior predictive loss, R(Ml(i)) − C, for each
model.

Ml(1) Ml(2) Ml(3) Ml(4)

P (Ml(i) |y) 0.0002 0.3396 0.5040 0.1562
R(Ml(i))− C 0 -808.81 -816.47 -814.43

P ∗(Ml(i) |y) 0.0005 0.4504 0.4455 0.1036
R(Ml(i))− C 0 -808.32 -810.67 -808.31

Table 7: Posterior probabilities and predictive losses for Hald’s data

Since these models are nested, Corollary 4 ensures that the median probability model is
the optimal predictive model. Using (9), it is clear from Table 7 that Ml(3) is the median
probability model, for both choices of prior probabilities. And, indeed, the posterior
predictive loss of Ml(3) is the smallest. Note that Ml(3) is the maximum probability model
for the first choice of prior probabilities, while Ml(2) (which is suboptimal) is the maximum
probability model for the second choice.

5 A geometric formulation

It was stated in the introduction that, in general, knowing only the model posterior
probabilities does not allow one to determine the optimal predictive model. This is best
seen by looking at the problem from a geometric perspective which, furthermore, provides
considerable insight into the problem.
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Assuming the matrix Q in (5) is non-singular and positive definite matrix, consider
its Cholesky decomposition, Q = A′A, where A is a k × k upper triangular matrix. The
expected posterior loss (16) to be minimized can then be written as

R(Ml) = (αl − ᾱ)′(αl − ᾱ), (28)

where αl = AHl β̃l is a k-dimensional vector and ᾱ = A β̄ =
∑

l pl AHl β̃l. It follows
that the preferred model will be the one whose corresponding αl is nearest to ᾱ in terms
of Euclidean distance.

The geometric formulation of the predictive problem follows by representing each
model Ml by the point αl. The collection of models thus becomes a collection of points
in k-dimensional space. The convex hull of these points is a polygon representing the set
of possible model averaged estimates ᾱ, as the pl vary over their range. Hence any point
in this polygon is a possible optimal predictive model, depending on the pl, and the goal
is to geometrically characterize when each single model is optimal, given that a single
model must be used.

Consider the simple situation in which we have two covariates x1 and x2 and three
possible models:

M10 : {x1} M01 : {x2} M11 : {x1, x2},

again writing, e.g., M01 instead of M(0,1). These can be represented as three points in
the plane. (If the three models had a constant, or intercept, term, then the three points
would lie on a plane in three-dimensional space, and the situation would be essentially
the same.)

Depending on the sample correlation structure, the triangle whose vertices are α01,
α10 and α11 can have three interesting distinct forms. These three forms are plotted in
Figure 1. Subregions within each plot will be denoted by the vertices; thus, in Figure
1(a), [α01, F, C] denotes the triangle whose vertices are α01, F and C.

Each triangle can be divided into optimality subregions, namely the set of those ᾱ
which are closest to one of the αl. These are the regions defined by the solid lines. Thus,
in Figure 1(a), the triangle [α10, F, C] defines those points that are closer to α10 than to
the other two vertices; hence, if ᾱ were to fall in this region, the optimal single model
would be M10. If ᾱ were to fall in the triangle [α01, B,E], the optimal single model would
be M01 and, if ᾱ were to fall in the region between the two solid lines, the optimal single
model would be M11. It is easy to see that these optimality regions are formed by either
(i) connecting the perpendicular bisectors of the sides of the triangle, if all angles are less
than or equal to 90◦, or (ii) drawing the perpendicular bisectors of the adjacent side of
an angle that is greater than 90◦.

In each plot, A, B and C are the midpoints of the line segments −−−−→α10α01,
−−−−→α01α11 and−−−−→α10α11, respectively, while O is the midpoint of the triangle. These are of interest because
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Figure 1: Three possible scenarios for the graphical representation of predictive model
selection from among M10 : {x1} , M01 : {x2} , and M11 : {x1, x2}.
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they define regions such that, if ᾱ lies in the region, then the model corresponding to the
vertex in the region has the largest posterior probability. Thus, in Figure 1(a), if ᾱ lies in
the polygon [α10, A,O,C], then M10 must be the maximum posterior probability model.

Note that the maximum posterior probability regions do not coincide with the optimal
predictive model regions. As a dramatic illustration of the difference, consider Figure 1(a)

and suppose that ᾱ lies on the line segment
−→
EF . Then M11 is the optimal predictive

model, even though it has posterior probability 0. Also, either M10 or M01 have posterior
probability at least 1/2 on this line segment, yet neither is the best predictive model.

The dashed lines form the boundaries defining the median probability models. Thus,
if ᾱ lies in the triangle [α10, A, C], then M10 will be the median probability model, while
if ᾱ lies in the polygon [C, A,B, α11], then M11 will be the median probability model. To

see why this is so, note that the line segment
−→
AC consists of the points for which p10 = 1/2

(i.e., for which M10 has probability 1/2). But then clearly the inclusion probability for
variable x2 is also equal to 1/2 on this line segment, since p2 = p01 + p11 = 1 − p10.

Similarly,
−→
AB consists of the points for which the inclusion probability for variable x1 is

equal to 1/2. It is immediate that the median probability model in (7) is defined by the
indicated regions.

Figures 1(a) and 1(b) thus show that the median probability model will not always
equal the optimal predictive model. Indeed, the two are the same only in the situation
of Figure 1(c). In a sense, the theory in the preceding sections arose out of efforts to
characterize situations in which the predictive risk representation would be as in Figure
1(c). We found that this is so if X

′
X is diagonal and (17) holds, as in Subsection 3.1. We

also found this to be true in the nested model case discussed in Subsection 3.3. (Indeed
the resulting figure is simply a rotated version of Figure 1(c).) Subsequently, we were able
to develop the more general algebraic theories in those sections, but they were based on
insights obtained through the geometric formulation.

One can seek alternative theories based on observations in the geometric formulation.
For instance, notice that, if the triangle in Figure 1(b) were equilateral, then O and G
would coincide and the maximum probability model would equal the optimal predictive
model. Unfortunately, we could not find any useful general conditions under which the
triangle would be equilateral.

6 Concluding Comments

6.1 When the theory does not apply

The conditions of the optimality theory for the median probability model are quite strong,
and will often not apply. Nevertheless, the fact that only the median probability model
seems to have any optimality theory whatsoever suggests that it might quite generally be
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successful, even when the optimality theory does not apply.

Example 3 (continued): Suppose that all models (including at least the constant term)
are considered for Hald’s data. This does not formally satisfy the theory in Section 4,
since the models are not nested and the conditions of Corollary 3 do not apply. But,
here, the situation is simple enough that we can directly compute the posterior predictive
losses corresponding to each of the possible models, using (16) and assuming equal prior
probabilities of the models. The results are given in Table 8.

Model P (Ml|y) R(Ml)
c 0.000003 2652.44

c,1 0.000012 1207.04
c,2 0.000026 854.85
c,3 0.000002 1864.41
c,4 0.000058 838.20

c,1,2 0.275484 8.19
c,1,3 0.000006 1174.14
c,1,4 0.107798 29.73

Model P (Ml|y) R(Ml)
c,2,3 0.000229 353.72
c,2,4 0.000018 821.15
c,3,4 0.003785 118.59

c,1,2,3 0.170990 1.21
c,1,2,4 0.190720 0.18
c,1,3,4 0.159959 1.71
c,2,3,4 0.041323 20.42

c,1,2,3,4 0.049587 0.47

Table 8: Posterior probabilities and posterior expected losses for Hald’s data

Computation of the posterior inclusion probabilities yields

p1 =
∑

l:l1=1

P (Ml|y) = 0.954556, p2 =
∑

l:l2=1

P (Ml|y) = 0.728377

p3 =
∑

l:l3=1

P (Ml|y) = 0.425881, p4 =
∑

l:l4=1

P (Ml|y) = 0.553248.

Thus the median probability model is {c, x1, x2, x4} which, from Table 8, clearly coincides
with the optimal predictive model. Note that the risk of the maximum probability model
{c, x1, x2} is considerably higher than that of the median probability model.

This example is typical; in our experience, the median probability model considerably
outperforms the maximum probability model in terms of predictive performance. At the
very least, this suggests that the median probability model should routinely be determined
and reported along with the maximum probability model.

6.2 When does the median probability model fail?

Suppose that the only models entertained are those with a constant term and a single
covariate xi, i = 1, . . . , k, with k ≥ 3, as well as the model with only a constant term. All
models have equal prior probability of 1/(k+1). Furthermore, suppose that all covariates
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are nearly perfectly correlated, with each other and with y. Then the posterior probability
of the constant model will be near zero, and that of each of the other models will coincide
with the posterior inclusion probabilities of each of the xi, and will be approximately 1/k.
Since these posterior inclusion probabilities are less than 1/2, the median probability
model will be the constant model, which will have very poor predictive performance
compared to any of the other models.

The suggestion is that use of the median probability model might be problematical if
there are many highly correlated covariates. We have not yet observed such a difficulty
in practice, however.

6.3 Use of posterior inclusion probabilities

In addition to being key to defining the median probability model, the posterior inclu-
sion probabilities in (6) can be important tools in assessing the effect of covariates, as
indicated in the ANOVA example. One can, furthermore, define joint posterior inclusion
probabilities of covariates; these can be very useful in unravelling the effects on model se-
lection of correlations among covariates. See Nadal (1999) for examples. The importance
of posterior inclusion probabilities was emphasized in Mitchell and Beauchamp (1988).
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